Project Documentation | UMRR Automotive Sensor Data Sheet

Project Number:

SMS Project Number:

Project Title:
Automotive Radar Sensor

Keyword(s):
UMRR Automotive Sensor Data Sheet
Collision Warning Radar
Forward Collision Warning

Date:
August 20, 2014

Document:
UMRR Automotive Type 30 Data Sheet.doc
1 Sensor Data Sheet

Smartmicro offers a family of traffic Radar sensors called UMRR – Universal Medium Range Radar.

A number of different antennas are available - so the permanent fixed field of view and max. range can be selected by the customer.

This data sheet describes the type 30 antenna model (all model specific values are highlighted).

Type 30 Antenna aims at medium range with wide horizontal angular coverage.

Figure 1: Automotive Sensor Type 30 – front and rear view.

Also available:
- Other versions of the housing for OEM integration.
- Other solution for connector and cable stump.
- Other physical interface options.

For more details please contact us.
1.1 General Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Range on Pedestrian</td>
<td>40’</td>
<td>m</td>
</tr>
<tr>
<td>Max. Range on Passenger Car</td>
<td>90’</td>
<td>m</td>
</tr>
<tr>
<td>Minimum Range</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>Range accuracy</td>
<td>Typ. < ±2.5% or < 0.25m</td>
<td>%, m</td>
</tr>
<tr>
<td>Radial Speed Interval</td>
<td>-70 ...+70</td>
<td>m/s</td>
</tr>
<tr>
<td>Minimum abs. Radial Speed</td>
<td>0.1</td>
<td>m/s</td>
</tr>
<tr>
<td>Speed accuracy</td>
<td>Typ. < ±0.28</td>
<td>m/s</td>
</tr>
<tr>
<td>Angle Interval (total field of view)</td>
<td>-8 ...+8 (El.); -35 ...+35 (Az.)</td>
<td>degree</td>
</tr>
<tr>
<td>Update time</td>
<td><= 50</td>
<td>ms</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>-40 ... +85</td>
<td>degree C</td>
</tr>
<tr>
<td>Shock</td>
<td>100</td>
<td>g_{rms}</td>
</tr>
<tr>
<td>Vibration</td>
<td>14</td>
<td>g_{rms}</td>
</tr>
<tr>
<td>IP</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Pressure / Transport altitude</td>
<td>0...10.000</td>
<td>m</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>295</td>
<td>g</td>
</tr>
<tr>
<td>Dimensions</td>
<td>See 1.7</td>
<td></td>
</tr>
<tr>
<td>Model No.</td>
<td>0A0301-1E0300</td>
<td></td>
</tr>
<tr>
<td>DSP Board – Antenna Identification</td>
<td>0A0301-1E0300</td>
<td></td>
</tr>
<tr>
<td>Housing Identification</td>
<td>030600</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>7 ... 32</td>
<td>V DC W</td>
</tr>
<tr>
<td>Frequency Band</td>
<td>24.0...24.25</td>
<td>GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>< 100</td>
<td>MHz</td>
</tr>
<tr>
<td>Max. Transmit Power (EIRP)</td>
<td>20</td>
<td>dBm</td>
</tr>
<tr>
<td>Interfaces</td>
<td>CAN V2.0b (passive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS485 half-duplex</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>8 Pin plug Binder Series 712</td>
<td>CAN, Power, RS485</td>
</tr>
</tbody>
</table>

1 Typical values; may vary to higher or lower values depending on clutter environment. All values given for bore sight. Please note that the Radar system – like any other sensor system – although being well optimized and providing excellent performance, will not achieve a 100% detection probability and will not achieve a false alarm rate equal to zero.

II Total field of view is angle interval where reflectors can be detected; 3dB field of view is narrower.
1.2 Applications

The sensor is perfectly suited for all kind of collision warning (CW) applications. Generally it is very versatile and can be used for other purposes as well - stand alone or in a network (see also section 2). Typical applications are listed below.

Automotive OEM applications:
In such applications one or multiple sensors are specifically integrated into vehicle models of automotive OEMs – carmakers. Usually there is a specific engineering effort required for the adaptation to specific vehicle models and the rigorous test procedures which will be applied. Customer specific CAN interfaces, warning algorithms or other custom software packages can be included.

Examples:
- Forward collision warning (FCW).
- Rear collision warning.
- Front and rear Pre-Crash/Pre-Safe applications.
- Adaptive cruise control (ACC) with Stop & Go handling.
- Traffic jam assist.

General applications:
Based on the object list (see section 1.3) as a generic data interface a number of applications are possible. A selection is listed below. Please note that these applications can either be made part of the software embedded in the sensor or can be implemented by the customer:

Examples:
- Forward collision warning (FCW).
- Rear collision warning.

Applications:
- Passenger cars
- Buses
- Trucks
- Robotics and autonomous driving vehicles
1.3 Function Description

The sensor is a small, lightweight, very robust low cost 24GHz Radar for automotive applications. It is intended for the applications listed in section 1.2 and can be used almost worldwide in this frequency band.

It works in adverse conditions, almost unaffected by weather, and independent of sunlight, in a wide temperature interval. The radar withstands high shock and vibration levels, is maintenance free and made for a long lifetime.

The customer can select from a number of antennas that determine the permanent fixed field of view and range. Type 30 Antenna aims at medium range with wide horizontal angular coverage (see section 1.4).

Using a patented transmit signal waveform, each individual sensor measures range, radial speed and angle, reflectivity and other parameters of multiple stationary and moving reflectors (targets) simultaneously. Having multi target capability, the sensor will report many reflectors at a time being within the field of view (target list):
- Range
- Angle
- Radial Speed
- Reflectivity
- Other...

Additional filter algorithms are implemented for the tracking of all detected reflectors over time, those tracking algorithms are integrated in the sensor. Multiple objects are tracked simultaneously; the individual reflectors are separated in the detection algorithms by having a different radial speed value and/or different range value, as well as by the tracking algorithms and data base. The result of the tracking is an object list with the following parameters:
- x position
- y position
- x component of the velocity
- y component of the velocity
- other...

Finally based on all detected targets and tracked objects in the field of view a function/application algorithm can be implemented, like a collision warning signal.

Hence the sensor reports such a list of all tracked objects, including stationary objects, inside its field of view in every measurement cycle of typ. 50ms length.

In addition to that, status and diagnose data from the sensor are reported.
1.4 Antenna Field of View

The figures below show typical single and multiple sensor configurations for front or rear collision warning.

Figure 2: Single type 30 sensor collision warning configuration.

Figure 3: Multiple sensor configuration with type 30 forward collision warning and type 31 side and rear sensors.
1.5 Application Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track (object) initialization time</td>
<td>6...10 cycles typical</td>
</tr>
<tr>
<td>Simultaneous Object Tracking</td>
<td>Up to 32 objects (single sensor)</td>
</tr>
<tr>
<td></td>
<td>Up to 128 objects (typ., multi sensor system)</td>
</tr>
<tr>
<td>Mounting Height</td>
<td>0,3...3(^{\text{i}})</td>
</tr>
<tr>
<td>Sensor az. mounting angle on vehicle</td>
<td>any</td>
</tr>
<tr>
<td>Sensor elevation mounting angle</td>
<td>+3...-5 degree to ground(^{\text{II}})</td>
</tr>
</tbody>
</table>

\(^{\text{i}}\) May affect max. detection range. The best performance for the applications listed in 1.2 is typically achieved for mounting heights between 0.4...0.8m, sensor looking parallel to ground plane (driving plane).

\(^{\text{II}}\) Smaller angles allow longer detection range along a road.

1.6 On-board diagnostics (BIT)

The UMRR sensor cyclically reports a status message providing the following information (Continuous BIT)

- Sensor run time
- Sensor cycle time
- Sensor mode
- Other status bits

Initiated BIT is available. Sensor will send BIT results when it receives a command to do so.
1.7 Sensor Dimensions

All values given in mm.

Also available:
- Other versions of the housing for OEM integration.
- Other solution for connector and cable stump.
- Other physical interface options.

For more details please contact us.
Figure 6: Sensor Rear Side

1. **Do Not Cover**
 - **Breather**: Do not cover!
 - **6xM3; 6.5 deep**: 6xM3; 6.5 deep

Dimensions:
- 91.4 mm
- 59.44 mm
- 70.33 mm
- 38.42 mm
- 37.28 mm
- 75.7 mm
1.8 Connector

The used sensor connector is an 8-pin male circular connector (water proof IP67, series 712, manufacturer Binder GmbH, Germany). A female counterpart has to be used to connect to the sensor. The pin numbering of the female connector is shown in Figure 7 the pin out of the connector is shown in Table 1.

![Figure 7: View on solder cup side of socket (rear view of female counterpart to be connected to sensor)](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Wire color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS485 L</td>
<td>Pink = RS_485_L</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td>Blue = GND</td>
</tr>
<tr>
<td>3</td>
<td>RS485 H</td>
<td>Grey = RS_485_H</td>
</tr>
<tr>
<td>4</td>
<td>CAN_L</td>
<td>Yellow = CAN_L</td>
</tr>
<tr>
<td>5</td>
<td>CAN_H</td>
<td>Green = CAN_H</td>
</tr>
<tr>
<td>6</td>
<td>not connected</td>
<td>Brown = n.c.</td>
</tr>
<tr>
<td>7</td>
<td>+7V...+32V</td>
<td>Red = Vcc (+7V...+32V)</td>
</tr>
<tr>
<td>8</td>
<td>not connected</td>
<td>White = n.c.</td>
</tr>
</tbody>
</table>

Table 1: Sensor connector pin out Model UMRR-0Axxxx, UMRR-0Bxxxx

Please note that in the standard configuration the sensor has no 120Ohms resistor on board (CAN bus termination between CAN_L and CAN_H). The resistor is nevertheless required at either end of a CAN bus and is in most cases integrated in the cable delivered along with the sensor (if cable is manufactured by Smartmicro).
2 Multi Sensor Systems

2.1 Configurations

The sensor may be used standalone or multiple sensors can be connected in a network. Such networks are only possible using CAN interface (not possible via RS485, Ethernet, WiFi). Networks work plug and play, free of mutual interference.

A network of multiple sensors can be established by connecting to a sensor data fusion and tracking controller (see Figure 10, read data sheet), or using two sensors in a master slave setup.

In all configurations, the detection algorithms are run on the sensor (output data: target list). In single sensor configuration and in master-slave configuration, the tracking and function/application algorithms are also embedded in the sensor (output data: object list plus functional/application results). In a configuration with more than two sensors in a network, the sensor data fusion and tracking controller will accomplish tracking and function/application algorithms.

Customer specific configurations are possible.

2.2 Data logging and visualization tools

Visualization of all data (i.e. target lists, object lists, other) is possible using the Drive Recorder software on any PC, as well as data logging, associated video documentation, play back and analysis functions and more.

Instead of the Drive Recorder, other customer specific visualization, logging, or function/application software products may be applied; the radar system’s data interface is easy to integrate.

2.3 Additional Information

For more information on Smartmicro automotive Radars see also:
Automotive sensor system architectures.pdf
ACC and S&G technical Information.pdf
LCA and BSD Technical Information.pdf
Blind Spot Detection Function description.pdf
Figure 8: Typical single sensor configuration for forward collision warning (FCW) – one box design.

Figure 9: Typical single sensor configuration for forward collision warning – with customer control box containing warning algorithm and LED drivers.
Figure 10: Dual sensor configuration for forward collision warning – with tracking and data fusion controller.
3 Important Legal Disclaimer Notice

All Product, Product specifications and data in this project documentation are subject to change without notice to improve reliability, function, design or otherwise.

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Smartmicro disclaims any and all liability for any errors, inaccuracies or incompleteness contained in this datasheet or in any other disclosure relating to the Product.

To the extent permitted by applicable law, Smartmicro disclaims (i) any and all liability arising out of the application or use of the Product or the data contained herein, (ii) any and all liability of damages exceeding direct damages, including - without limitation – indirect, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of suitability of the Product for a particular purpose.

Statements regarding the suitability of Products for certain types of applications are based on Smartmicro’ knowledge of typical requirements that are often placed on Smartmicro’ Products in generic/general applications. Such statements are, however, not binding statements about the suitability of Products for a particular/specific application. It is the customer/user’s own responsibility to validate that the Product with the specifications described herein is suitable for use in its particular/specific application. Parameters and performance of the Products may due to particular/specific applications and due to particular/specific surroundings deviate from the statements made herein. Therefore, it is important that customer/user has thoroughly tested the Products and has understood the performance and the limitations of the Products before installing the Products for the final applications or before commercialization. Although Products are well optimized to be used for the intended applications stated herein, it must also be understood by the customer/user that the detection probability may not be 100 % and the false alarm rate may not be zero.

The information provided herein, relates only to the specific Product designated and may not be applicable when such Product is used in combination with other materials or in any process not defined herein. All operating parameters, including typical parameters, must be validated for each customer application by the customer/user’s technical experts. Customers using or selling Smartmicro products not expressly indicated for use in such applications do so at their own risk.

This Product specification or data sheet does not expand or otherwise modify Smartmicro terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing by Smartmicro, the Products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Product could result in personal injury or death.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Smartmicro Product names and markings noted herein may be trademarks of their respective owners.

Please note that the application of the Product may be subject to standards or other regulations that may vary from country to country. Smartmicro does not guarantee that the use of Products in the applications described herein will comply with such regulations in any country. It is the customer/user’s responsibility to ensure that the use and incorporation of Products complies with the regulatory requirements of their markets.

If any provision of this Disclaimer is, or is found to be, void or unenforceable under applicable law, that will not affect the validity or enforceability of the other provisions of this Disclaimer.
4 Contact

Address:
smart microwave sensors GmbH
In den Waashainen 1
38108 Braunschweig
Germany

Phone / Fax numbers:
Phone: +49-531-39023-0
Fax: +49-531-39023-599

Web / Email address:
Web: www.smartmicro.de
Email: info@smartmicro.de